
Logistic Regression

Chris Piech
CS109

Lecture #25

Nov 28th, 2018

Before we get started I wanted to familiarize you with some notation:

θ
T x =

n

∑
i=1

θixi = θ1x1 +θ2x2 + · · ·+θnxn weighted sum

σ(z) =
1

1+ e−z sigmoid function

1 Logistic Regression Overview

Classification is the task of choosing a value of y that maximizes P(Y |X). Naı̈ve Bayes worked by approxi-
mating that probability using the naı̈ve assumption that each feature was independent given the class label.

For all classification algorithms you are given n I.I.D. training datapoints (x(1),y(1)),(x(2),y(2)), . . .(x(n),y(n))
where each “feature” vector x(i) has m = |x(i)| features.

Logistic Regression Assumption

Logistic Regression is a classification algorithm (I know, terrible name) that works by trying to learn a func-
tion that approximates P(Y = 1|x). It makes the central assumption that P(Y = 1|x) can be approximated as
a sigmoid function applied to a linear combination of input features. Mathematically, for a single training
datapoint (x,y) Logistic Regression assumes:

P(Y = 1|X = x) = σ(z) where z = θ0 +
m

∑
i=1

θixi

This assumption is often written in the equivalent forms:

P(Y = 1|X = x) = σ(θ T x) where we always set x0 to be 1

P(Y = 0|X = x) = 1−σ(θ T x) by total law of probability

Using these equations for probability of Y |X we can create an algorithm that selects values of theta that max-
imize that probability for all data. I am first going to state the log probability function and partial derivatives
with respect to theta. Then later we will (a) show an algorithm that can chose optimal values of theta and (b)
show how the equations were derived.

An important thing to realize is that: given the best values for the parameters (θ), logistic regression often
can do a great job of estimating the probability of different class labels. However, given bad , or even random,
values of θ it does a poor job. The amount of “intelligence” that you logistic regression machine learning
algorithm has is dependent on having good values of θ .

Log Likelihood

In order to chose values for the parameters of logistic regression we use Maximum Likelihood Estimation
(MLE). As such we are going to have two steps: (1) write the log-likelihood function and (2) find the values
of θ that maximize the log-likelihood function.

The labels that we are predicting are binary, and the output of our logistic regression function is supposed
to be the probability that the label is one. This means that we can (and should) interpret the each label as a
Bernoulli random variable: Y ∼ Bern(p) where p = σ(θ T x).

To start, here is a super slick way of writing the probability of one datapoint (recall this is the equation form
of the probability mass function of a Bernoulli):

P(Y = y|X = x) = σ(θ T x)y ·
[
1−σ(θ T x)

](1−y)

Now that we know the probability mass function, we can write the likelihood of all the data:

L(θ) =
n

∏
i=1

P(Y = y(i)|X = x(i)) The likelihood of independent training labels

=
n

∏
i=1

σ(θ T x(i))y(i) ·
[
1−σ(θ T x(i))

](1−y(i))
Substituting the likelihood of a Bernoulli

And if you take the log of this function, you get the reported Log Likelihood for Logistic Regression. The
log likelihood equation is:

LL(θ) =
n

∑
i=1

y(i) logσ(θ T x(i))+(1− y(i)) log[1−σ(θ T x(i))]

Recall that in MLE the only remaining step is to chose parameters (θ) that maximize log likelihood.

Gradient of Log Likelihood

Now that we have a function for log-likelihood, we simply need to chose the values of theta that maximize
it. We can find the best values of theta by using an optimization algorithm. However, in order to use an
optimization algorithm, we first need to know the partial derivative of log likelihood with respect to each
parameter. First I am going to give you the partial derivative (so you can see how it is used). Then I am going
to show you how to derive it:

∂LL(θ)
∂θ j

=
n

∑
i=1

[
y(i)−σ(θ T x(i))

]
x(i)j

Parameter Estimation

Our goal is to choosing parameters (θ) that maximize likelihood, and we know the partial derivative of log
likelihood with respect to each parameter. We are ready for our optimization algorithm.

2

In the case of logistic regression we can’t solve for θ mathematically. Instead we use a computer to chose
θ . To do so we employ an algorithm called gradient ascent (a classic in optimization theory). The idea
behind gradient ascent is that if you continuously take small steps in the direction of your gradient, you will
eventually make it to a local maxima. In the case of logistic regression you can prove that the result will
always be a global maxima.

The update to our parameters that results in each small step can be calculated as:

θ
new

j = θ
old

j +η · ∂LL(θ old)

∂θ old
j

= θ
old

j +η ·
n

∑
i=1

[
y(i)−σ(θ T x(i))

]
x(i)j

Where η is the magnitude of the step size that we take. If you keep updating θ using the equation above
you will converge on the best values of θ . You now have an intelligent model. Here is the gradient ascent
algorithm for logistic regression in pseudo-code:

Pro-tip: Don’t forget that in order to learn the value of θ0 you can simply define x0 to always be 1.

2 Derivations

In this section we provide the mathematical derivations for the gradient of log-likelihood. The derivations are
worth knowing because these ideas are heavily used in Artificial Neural Networks.

Our goal is to calculate the derivative of the log likelihood with respect to each theta. To start, here is the
definition for the derivative of a sigmoid function with respect to its inputs:

∂

∂ z
σ(z) = σ(z)[1−σ(z)] to get the derivative with respect to θ , use the chain rule

Take a moment and appreciate the beauty of the derivative of the sigmoid function. The reason that sigmoid
has such a simple derivative stems from the natural exponent in the sigmoid denominator.

Since the likelihood function is a sum over all of the data, and in calculus the derivative of a sum is the sum
of derivatives, we can focus on computing the derivative of one example. The gradient of theta is simply the
sum of this term for each training datapoint.

First I am going to show you how to compute the derivative the hard way. Then we are going to look at an
easier method. The derivative of gradient for one datapoint (x,y):

∂LL(θ)
∂θ j

=
∂

∂θ j
y logσ(θ T x)+

∂

∂θ j
(1− y) log[1−σ(θ T x] derivative of sum of terms

=

[
y

σ(θ T x)
− 1− y

1−σ(θ T x)

]
∂

∂θ j
σ(θ T x) derivative of log f (x)

=

[
y

σ(θ T x)
− 1− y

1−σ(θ T x)

]
σ(θ T x)[1−σ(θ T x)]x j chain rule + derivative of sigma

=

[
y−σ(θ T x)

σ(θ T x)[1−σ(θ T x)]

]
σ(θ T x)[1−σ(θ T x)]x j algebraic manipulation

=
[
y−σ(θ T x)

]
x j cancelling terms

Derivatives Without Tears

That was the hard way. Logistic regression is the building block of Artificial Neural Networks. If we want to
scale up, we are going to have to get used to an easier way of calculating derivatives. For that we are going

3

to have to welcome back our old friend the chain rule. By the chain rule:

∂LL(θ)
∂θ j

=
∂LL(θ)

∂ p
· ∂ p

∂θ j
Where p = σ(θ T x)

=
∂LL(θ)

∂ p
· ∂ p

∂ z
· ∂ z

∂θ j
Where z = θ

T x

Chain rule is the decomposition mechanism of calculus. It allows us to calculate a complicated partial deriva-
tive (∂LL(θ)

∂θ j
) by breaking it down into smaller pieces.

LL(θ) = y log p+(1− y) log(1− p) Where p = σ(θ T x)
∂LL(θ)

∂ p
=

y
p
− 1− y

1− p
By taking the derivative

p = σ(z) Where z = θ
T x

∂ p
∂ z

= σ(z)[1−σ(z)] By taking the derivative of the sigmoid

z = θ
T x As previously defined

∂ z
∂θ j

= x j Only x j interacts with θ j

Each of those derivatives was much easier to calculate. Now we simply multiply them together.

∂LL(θ)
∂θ j

=
∂LL(θ)

∂ p
· ∂ p

∂ z
· ∂ z

∂θ j

=
[y

p
− 1− y

1− p

]
·σ(z)[1−σ(z)] ·x j By substituting in for each term

=
[y

p
− 1− y

1− p

]
· p[1− p] ·x j Since p = σ(z)

= [y(1− p)− p(1− y)] ·x j Multiplying in
= [y− p]x j Expanding

= [y−σ(θ T x)]x j Since p = σ(θ T x)

4

